
12 - -  
-

~~~~~~~~~

AD AO6O S’48 G€OfiGE WAS HINGTON UNIV WASHINGTON D C INST FOR MAN*G——ETC F/G 12/1
LARGE SCALE NONLINEAR PROGRAMMING. (U)

I UNØL Ass
~2~aj~~~ 

P
III~~ 111111_0* AG29- 76-G -0150 ML

I
I

I
I

H



I f~ ~~ I2~ 111 2.5
n~~~ ~~~~

_____ 
2.2

~~

I ~~~~~ 

~ 2.O *

d __________

Hh~
25 IIIII~ iiii~

MICROCOPY RESOLUTION TEST CH~~ T
NAT IOt ~AL BUREAU OF STAI~OARDS-I963-~,



_ _  

crrw

G E O R G E
W A S HIN G T O N
UNIVERSITY

‘~FVF[~STUDENTS FACULTY STUDY E~ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECI—

.8 NOLOGY FRONTIF SIGN
ENGINEERING APP EN(
GEORGE WASHIN NI\

- i r~~fl~

I3JE~ 
OCT :~~ /

/

IN STITUTE FOR MANAGEMENT
SCIFNCE A N D  EN GI N E E R I N G
SCHOOL OF ENGINEE RING

AND APPLIED S( IENCE

ThiS DOCUMENT HAS ØEEN APPROVED FOR PU8LIC RtLEASE AND SALE; ITS DISTRIBUTION IS UMUMITED



fl~~~~i1T~ I
. .:

~~~~~ ~~~ 
I

L LARGE SCALE NONLINEAR PROGRAMMING

Garth P ./McCormick

~~~~~a~- .T—378

~t, 
T~~E~~1~ ~—-

~~~~~~~~~~~~~~~~~~~~~~~~
--

~~~~~~~~~

~~~~~~ - ~~ t - 

/

—~

The George Washington University I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

School of Engineering and Applied Science

/Lnstitute for Management Science and Engineering

ffi~?f~f~flfl IE
CCI 24 ~~

Research Sponsored by 

~j[JL~~~L U  U ~~

This document has been approved for public
• sale and release; its distribution is unlimited.

/

// (~ ~

_ _ _ _ _ _  ~~~~~~~~~ - —• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I

The findings in this report are not to be
construed as an official Department of the
Army position, unless so designated by other
authorized documents.

_________

Li •~~~~~~~~~ _ _ _



SECURITY CLASSIF ICATION OF THIS PAGE (*7,.n Oat. Enfe r .d)  __________________________________ —
REPORT DOCUMENTATION PAGE READ INSTRUCTION S

____________________________________________________ 
BEFORE_COMPLETING_FORM

I . REPORT N U M B E R
[2. 

GOVT ACCESSION NO. 3. RECIPIENT ’S CATALOG NUMBER

TIT LE (aid S.~bUil.) S. TYPE OF REPORT & PERIOD COVERED

LARGE SCALE NONLINEAR PROGRAMMING SCIENTIFI C
6. PERFORMING ORG. REPORT NUMBER

1. AUT HOR(s ) I. CONTRACT OR GRANT NUMBER(S)

GARTh P . McCORMI CK DAAG29— 76—G— O15O

• 9. PERFORMING ORGANIZATION NAME AND ADD RESS 10. PROGRAM ELEMENT. PROJECT , TASK
AREA a WORK UNIT NUMBERS

THE GEORGE WASHINGTON UNIVERSITY
INSTITUTE FOR MANAGEMENT SCIENCE & ENGINEERING
WASHINGTON , D. C. 20052 

__________________________

II. CONTROLLING OFFICE N A M E  AND ADDRESS 12 . REPORT DATE

U. S. ARMY RESEARCH OFFICE ~~ rnwr 1979
BOX 12211 IS. N U M B E R O F PA G E S

RESEARCH TRIANGLE PARK , N . C’ 777f l~ 15
14. MONITORING AGENCY NAME a ADORESS (If dii I.,.., : iron, Controlling Oific.) IS. SECURITY CLASS. (of thu ,.poil)

NON E
15.. DEC LASSIFICATION /DOWNGRADING

SCHEDULE

I~ . DISTRIBUTION STATEMENT (of this Ripen )

DISTRIBUTION OF THIS REPORT IS UNL IMITED.

17. DISTRIB UTION STATEMENT (of IA. abetted .nt.r.d In Block 20 , ii diff.,wt iron, R.port) ._...~...

a” : ii

‘Sc
uu*,r ,t,_C1,,

IS. SUP~~.EME NTA RY NOTES JET~~ICA T IO ~

H
c t ~ LS~~L;1T COOl

15. KEY WORDS (Conhinu. as, t.n.t.. aid. if nic••iary aid ld.ntify by block n,a,b.r) L. In,~~~ IP!CIE

LARGE SCALE OPTIMIZATION

APPLICATIONS OF NONLINEAR PROGRAMMING _________________

NONL INEAR PROGRAMMING

20. ABSTIt~ fT (Contima. on n•.’ re• aid. ii n.ca.aaoy aid id.ntify by block ma,b.r)

m i s  paper considers first the real world situations which give rise
to large nonlinear programming problems. Next the algebraic structure of
these problems is analyzed. A brief survey of algorithms for solving
them is given with emphasis on those whose computer programs are available.
Concluding remarks concern an estimation of future research required in
this area

FORM •~~DD ~~ ~ 
1473 EDIT ION OF I NOV 65 IS OBSOLETE NON ES/N 0I02•O1 4~ 660 1

SECURITY CLASSIFICA TION OF THIS PAG E (WFi.n Date Is,I.ud)

d



—%  
I.,) _

_
~~~o W I T Y  C LA S S4 I  1..~~ • )N ~)F ~~~~ PA C, ~ .’*b.., Data Knr,,.dj

SEC URI TY CLASSIFICATION OF THIS PAGE(WIion Date tnt.rod)

4
I



THE GEORG E WASHINGT ON UNIVERSITY
School of Engineering and Applied Science

• Institute for Management Science and Engineering

I• , Abstract
• of

Serial T—378
15 June 1978

LARGE SCALE NONLINEAR PROGRAMMING

by

Garth P. McCormick

This paper considers first the real world situations which give
rise to large nonlinear programming problems. Next the algebraic struc-
ture of these problems is analyzed. A brief survey of algorithms for
solving them is given with emphasis on those whose computer programs
are available. Concluding remarks concern an estimation of future re—
search required in this area.

Research Sponsored by
U.S. Army Research Office

Research Triangle Park, North Carolina 27709

L _ _



THE GEORGE WASHINGTON UNIVERS ITY
School of Engineering and Applied Science

Institute for Management Science and Engineering

LARGE SCALE NONLINEAR PROGRAMMING

by

Garth P. McCormick

1. Introduction

The general mathematical programming (optimization) problem can be

stated in the following form: find values (x
1
,.. . ,x )  which solve

minimize f(x)
x

subject to the restrictions that (1)

• g~ (x) .~~ 0 , for i=1, . . . ,m , H
• and

h .(x) 0 , for j =l , .. . ,p

What is nle4nt by a “large” optimization problem depends upon the nature

of the functions f , {g.} , and {h~ } . If they are linear functions,

it is usually the case that the restrictions x . > 0 for j=l,. .. ,n are

included in the inequality constraints and the problem is considered

large when (m+p—n) is more than 2,000. For linear programming problems,

the size of is is, for all practical purposes, unlimited. When the func-

tions are nonlinear, the size of n becomes important, and a large prob—

lem can be one where n is above 50. An exact definition is hard to
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give because the difficulty in solving a general nonlinear optimization

problem has a~ much to do with the nature of the functions involved as

it does with the dimensions of the problems. It is best first to des-

cribe situations which give rise to large nonlinear programming problems

and analyze their algebraic structure . This is done in Section 2. In

Section 3 there is an overview of current computer coded algorithms for

solving large nonlinear programs. In Section 4 is some speculation on

future research needed in this area with emphasis on a new approach

called factorable programming.

2. Large Nonlinear Programming Models

A major source of large nonlinear (and linear also) optimization

problems comes from the general area known as “resource allocation.”

The variables of the problem are usually written as ~~~~ , where k 1 ,

and 9.=l,... ,q . Here p is the number of resources available,

and q is the number of tasks or missions which can utilize the resources.

The functions f , f g . }  , {h .} are usually cost functions, effectiveness

functions, and functions which represent constraints on the resources.

The number of nontrivial constraints is usually of the order of (p+q)

but the problem can become “large” quickly because the number of variables

is equal to p q  . The following [Bracken and McCormick 1968] is a simple

example in the area of weapons allocation which illustrates this class of

problems.

Variables.

= number of weapons of type k to be allocated to target 2.

for k l ,. . . ,p; i l ,. . . ,q
Fixed inputs.

= (for k l ,... ,p) total weapons of type k available

— the probability that target 2. will be undamaged by an

attack of one of weapon type k

u2. 
— the military value of target 2.

— 2 —
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• The optimization problem is then

• maximize 
~~~i 

u 2.{i — 11~~~ cm~~~ j (expected target damage value)

subject to 
~~~~ 

< a,~ , for k l ,. . . ‘p
and x.K2. > 0 , for k 1 ,... ,p; 2. 1,.. .,q

Problems of this type typically have a special structure. In this

case the constraints are linear and “sparse.” The density of the matrix

of nontrivial linear constraints is lip with only the number “1.” defin-

ing the matrix. The constraints are all of the form of Generalized Upper

Bounds (GUB). Algorithms for solving linear problems have been able re-

cently to take advantage of this.

The concept of sparseness for nonlinearly constrained problems

• has not been developed in general. This example will be examined further

when it is shown how to use linear programming to solve separable optimi-
zation problems .

Another important area of nonlinear programming is that of optimal

structural design. This is an area where the ability to generate large
• difficult problems has outstripped the ability of algorithmists to solve

them. A typical problem takes the following form. Let a be a vector of

design variables, and x a vector of state variables. The usual objective

function in design problems is weight (to be minimized). The design vari-

ables are often cross—sectional areas of the members of the structure. The

constraints usually involve compatibility , equilibrium, and force deforma-
tion.

Variables.

• a design variables

x = state variables (in one formulation these are eliminated

from the problem)

- 3 -
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Fixed inputs and derived quantities.

S(cz) a positive definite matrix which depends on the design

variables

A = a matrix which depends upon the geometry of the problem

M mass matr ix

P = vector of applied forces

a = allowable stress for material used

A = vector of allowable deflections for state variables

K(a) = ATS( cm)A the stiffness matrix

length of ith member

p = density of material.

The optimization problem is then

minimize p ~ L.a1 (Weight)
(a,x) j 1 • 1

subject to x < A (Deflection Constraints)

K(a)x P (Stiffness Constraints)

S(a)Ax < cia (Stress Constraints)

Another interesting complication occurs if a buckling constraint is im-

posed. This takes the form X
1

(ci) > (some specified force) , where

• Amin (
~~ is the smallest eigenvalue of the generalized eigenvalue problem

• K(cs)y = M yA

For large structures, the number of variables and constraints be-

comes quite large. An alternative formulation which reduces the number

of variables is to solve for x K(a)~~P and substitute this wherever

x appears. There are difficulties in obtaining derivatives for this

implicitly defined problem, but it can be done with some effort and

thought.

— 4 —
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Use of finite elemen t techn iques for  shell structures is a
source of large nonlinear optimization problems .

There is an enormous literature on structural design. A sample

of mater ia l  irs the area is contained in [Haug 1973] and [Cohn and Maier
1978].

The final example of large nonlinear optimization problems comes

from the logistics area, inventory control. In [Schrady and Choe 1971]

the following problem was formulated.

Variables .

Q.,r . for i=l ,.. . ,N , the amount to order and the reorder

point of the ith inventory item.

Constants and fixed inputs.

c. item unit cost
1

A 1 mean demand per unit time (in units)

K1 
= maximum amount of money allowed to be tied up in in—

ventory

K2 
= reorder workload limit allowed to be tied up in in-

ventory

= mean and standard deviation of lead time demand (which

is assumed normally distributed) for the ith item.

Let ~~x) denote the normal density function with mean 0, standard

deviation 1., and let ~~z, f° ~~x)dx . The optimization problem which

produces the optimal order quantities and reorder points is

minimize f = 

~~~l ~~~ 
÷ (rj

_p
i
)2} ~~~~~~~~~~~~ — a

1
(r
1
_1i
~
) (ri

_
~
i)1

(expected time—weighted shortages)

subject to g
1 

= K2 
— 

~~~l Ai /Q 1 
> 0 (reorder workload constraint)

= K
1 

— 

~~~ 
c
1
(r. + Q~/2 — p.) > 0 (investment constraint)

> 0 , 1—1 ,... ,N

— 5 —
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When N , the number of inventory items , is large , this generates a large

nonlinear programming problem. It has a special structure which can be

utilized to solve it. This is discussed later in the paper when the SUMT

algorithm is applied to solve the problem.

Any nonlinear programming problem which has a dynamic character ,

i.e., whose variables are time—dependent , is usually large since the num-

ber of variables is equal to the product of the ‘x’s” times the number of

time periods. Examples of this are problems in optimal control , the cal-

culus of variations , and economic planning models . More sophisticated

dynamic versions of the weapons assignment problem with elements of game

theory and max—mm also generate large problems. See [Tomlin 19781 for

a discussion of this. These problems generally have a decomposable struc—

tu:e which can be used to uncouple the problem. Since one of the papers

in this meeting concerns that approach it will not be discussed further

here.

3. Computer Coded Algorithms for Solving
Large Nonlinear Programming Problems

There are direct and indirect methods for solving large nonlinear
• optimization problems. The indirect ways consist usually of solving a

sequence of linear or linearly constrained problems since computer pro-

grams for solving these problems are highly developed. The simplest way

of doing this was proposed in [Griffith and Stewart 1961]. The idea is

to make local linear approximations to the objective function and con-

straints and solve the resulting linear programming problems .

The second way is to take a general nonlinear optimization prob—

• len and solve it using a sequence of linearly constrained nonlinear pro-

gramming problems. Recent codes for solving the latter are [Lasdon and

Warren 1975] and [Murtagh and Saunders 1978]. Some papers relating to

the theory and algorithmic developments for converting nonlinearly con-

strained problems into sequences of linearly constrained problems are

discussed in [Powell 1978].

The third approach is to take a nonlinear programming problem ,

convert it to an equivalent separable nonlinear programming problem by

— 6 —
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adding equality constraints and extra variables, then solve It using the

• separable programming capability which is available with some of the large—

scale linear programming systems [Beale 1975]. Just about any nonlinear

programming problem can be “separated” using some simple tricks. To illus-

trate this , consider the weapons assignment problem of Section 1.

Use is made of the identity, a
X 

= eX2.
~~ . First, convert the data

and let = 2.n a.~2. , for k=l,.. . ‘p , and 2.=l,.. . ,q . Introduce the

new variables {Z
2.
} , and form the equality constraints z2. 

= 

~k=l 
~~~~~~

for 2.=l,... ,q . The equivalent separable optimization problem now has the

form

maximize ~q 
~ [1 — e

zu ]
{x.~~

},{z
i

} 2.— 2.

subject to the restrictions that

11=1 ~~2. < a~ , for k l ,... ,q , 

~k l  Xk2.8k2. , for 2.=l,... ,q

and

Xk2. 
> 0 , for k l ,... ,p; 2,=l , . . .  ,q

The new problem has pq + q variables , and p + q nontrivial linear con-

straints.

Depending upon the problem, the creation of an equivalent separable

one may generate a “large” separable problem from a moderate sized nonsep—

arable one. For discussion of a general systematic approach for separating

nonlinear programming problems , see [McCormick l972b] .

Separable problems are solved by the large linear programming systems

using the device of approximating the nonlinear functions of a single vari-

able by piecewise linear functions. There are many approaches for doing

this. References and discussion of this are in [Beale 1975].

A direct approach for solving large nonlinear programming problems

generally consists of taking advantage of the special structure of a par-

ticular large problem and modifying the linear algebra (matrix techniques)

— 7 —
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used for solving the problem so that the number of operations (multiplica-

tions and additions) is reduced , as well as obtaining a reduction in stor-

age. To illustrate this, consider the penalty function approach to the in-

ventory problem of Section 2. Let x be the vector of variables {Q
1,

r
1
}

The penalty function approach is to find the unconstrained minimizer

of
N

= f — r~2.n(g~ ) — r
k
9.n(g

2) 
— 

~ i l  rk
2.nQ

l

for a decreasing sequence of values {r
k
} which tend to zero. The uncon-

strained minimizers tend to the constrained solution. The fastest method

for finding the unconstrained minimizer is the generalized Newton’s method

which takes the form

x2.+l x2. 
— VxxPk~~ tj v

~k~~2. t
2. 

, (2)

(where t 2. is the step—size scalar). The traditional way of solving the

above equations is to form the nxn Hessian matrix and use Cholesky de-

composition to find the desired matrix equation solution. The storage re-

quired is n2 memory locations and the order of operations is n3/3
Thus for any reasonable number of inventory items (recall n 2N ) this

approach is computationally prohibitive. Like all large problems , there

is a special structure and matrix inversion techniques can be modified to
facilitate the solution of the problem.

The natural derivation of the Hessian matrix is depicted in Figure 1.

If it were formed explicitly it would require 4N2 memory locations. Kept

• in its implicit form it requires only 1ON locations (actually most of the

numbers are already available and need not be stored separately). If N

were 1,000 this is the difference between 4,000 ,000 and 10,000.

Computational efficiency is obtained by inverting V2 P
k 

using

the Woodbury—Morrison—Sherman formula recursively, i.e., the inverse of

a mat r ix  perturbed by an outerproduct matrix (or dyad) is the inverse of

the original matrix perturbed by a dyad. Specifically,

I T 1—l — l 1 — l T — l 1—1 T —lt A + v c v j = A - Avic + v A  vi v A  , (3)

— 8 —



S
~0

-4
~0

‘-4 5
U ... U

.

~~

.s
c..1

— 9 —



. - - - •- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .• • - .• - • - -—-~~

T— 378

where A is nxn , c is a scala r , and v is an n x l vector . Appl ying
this to (2), first A-f-B is formed. The inverse of (A-f-B) is gotten by

inver t ing the 2x2 blocks. This computation requires 2N multiplications.

The storage of this can be done in 4N2 (if symmetry is not used) locations.

Next , two applications of the formula are given. The computation of (A+B)
1
c

requires 4N multiplications and the result can be stored in 2N+l loca-

tions. The second application of (3) yields the desired matrix inverse in

implicit form. The total computations required are about l6N multiplica-

tions and the inverse can be stored in 7N memory locations. This is to be

compared with 8N313 multiplications required for the Cholesky method, and

4N2 memory locations. Further details of this are in [McCormick 1972a].

The point is that most large nonlinear programming problems have a

special structure, and algorithms for solving them can modify their matrix

techniques to reduce the number of operations and computer storage. For any

particular problem, the required modifications can be figured out. The

question is, is there a general structure which occurs in all problems for

which modifications to handle larger problems can be made. This point is

taken up in Section 4.

Direct methods for solving nonlinear optimization problems do not

handle problems of very large size. For a survey of software available and

the size of problems handled see [Sandgren 1977], [Waren and Lasdon 1977],

and [Wright 19781.

4. A General Approach to Large Nonlinear
Programming Problems

The Lagrangian function associated with Problem (1) is

L(x ,u ,w) = f (x)  — ~u . g . (x )  + ~w . h~ (x)

Solving the problem can be thought of as trying to find the Karush—Kuhn—

Tucker multipliers {u
1
} , and the Lagrange multipliers {W

j
} associated

with a point x solving the equations

V L(x ,u ,w) = 0

u~~1
(x) = 0 , for i 1 ,... ,m

h . (x) 0 , j= l , . . . ,p .

— 1 0 —



r v~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T— 378

A modified form of Newton’s method for solving these equations requires the

inverse of the matrix

/ 2  ( k k  k

~

c V L tSXk , U ,w ) N (x  )

~~ 
N(x,~)~ 0

where N(x.K) 
is the matrix of gradients of the active constraints and

equality constraints at xk . The full matrix inverse need not be obtained ,

just  Sk , a matr ix generating the null space of N(x.~) , and the inverse

- T 2  k k(explicitly or implicitly of the projected Hessian), = Sk V L(x.K ,u ,w

The ability of nonlinear programming algorithms to solve large problems is

t ied up wi th the ability to compute efficiently these quantities.

For large , sparse nonlinear programming problems , the techniques for
computing s(x ,K) are in most part available from the work done in the past

on linear programming problems . There is currently much work in alternative

ways of computing and updating the matrix giving the null space for linear

equations . Effor t  needs to be expended in computing . As in the in-

ventory problem, there is no need to form 
~~ 

explicitly. From the theory

of factorable programming it turns out that V2 L(x.K
,u
I(
,w
k
) is given auto-

matically as the sum of a diagonal matrix and outer product matrices. One

way of utilizing this to obtain the inverse was shown in the inventory prob-

lem. There are many other linear algebra approaches for solving this prob-

lem , which can take advantage of the sparseness of the vectors defining the

outer product form and the diagonal matrix. For more details see [McCormick

1978].

— 11 —
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